
13/03/2017

Cécile Camillieri

1

Software Testing
A bit further
Based on Sebastien Mosser’s course

● Test coverage

● Building better tests

● Simple case study walkthrough

Today’s plan

13/03/17 - CC - camillie@i3s.unice.fr 2

Before we go

About the answers to the form

13/03/17 - CC - camillie@i3s.unice.fr 4

● I will not go back on everything
● Our job is not to teach you programming
● No solution is “simple and quick”, and if it is,

it’s because you’ve done it a lot before

● More generally, we can only give you some
concepts and starting points, then you have
to provide the effort to improve yourself

How to improve

13/03/17 - CC - camillie@i3s.unice.fr 5

● Read.
● There are a lot of references out there.

● Practice.
● Knowing (how to do) is different than

being able to do.

Some references

13/03/17 - CC - camillie@i3s.unice.fr 6

Clean Code
A Handbook of Agile Software Craftsmanship

Robert C. Martin

UML@Classroom
(http://www.uml.ac.at/en/lernen)
Martina Seidl, Marion Scholz,
Christian Huemer, Gerti Kappel

Pragmatic Unit Testing
in Java with JUnit

Andrew hunt, David Thomas

http://www.uml.ac.at/en/lernen

How would you describe good code?

13/03/17 - CC - camillie@i3s.unice.fr 7

The @author field of a Javadoc tells us who we are.
We are authors. And one thing about authors is that
they have readers. Indeed, authors are responsible for
communicating well with their readers. The next time
you write a line of code, remember you are an author,
writing for readers who will judge your effort.

Robert C. Martin
Clean Code: A Handbook of Agile Software Craftsmanship

”

“

Test
Coverage

SonarQube (previously)

24/01/17 - CD - duffau@i3s.unice.fr 9

SonarQube and Unit Tests

13/03/17 - CC - camillie@i3s.unice.fr 10

 ????

Measuring code coverage

13/03/17 - CC - camillie@i3s.unice.fr 11

● Requires an ‘agent’ that observes the JVM

● Jacoco is such an agent

Using Jacoco with Maven

13/03/17 - CC - camillie@i3s.unice.fr 12

● Thankfully there is a maven plugin !

● We need to use it for all modules

● And connect it to SonarQube

In the parent pom.xml - part 1

13/03/17 - CC - camillie@i3s.unice.fr 13

<build>
 <plugins>

<plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin </artifactId>
 <version>0.7.6.201602180812 </version>
 <executions>
 <execution>
 <id>agent-for-ut</id>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 <configuration>
 <append>true</append>
 <destFile>${sonar.jacoco.reportPath} </destFile>
 </configuration>
 </execution>
 </executions>
</plugin>

 </plugins>
</build>

Append reports of all modules
in a single file

In the parent pom.xml - part 2

13/03/17 - CC - camillie@i3s.unice.fr 14

<pluginManagement>
 <plugins>

<...>
<plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin </artifactId>
 <version>0.7.8</version>
</plugin>

 </plugins>
</build>

<properties>
<sonar.jacoco.reportPath>

${project.basedir}/../target/jacoco.exec
</sonar.jacoco.reportPath>
<sonar.language>java</sonar.language>
<sonar.java.coveragePlugin>jacoco</sonar.java.coveragePlugin>

</properties>

Set properties for jacoco and sonar

That’s it!

13/03/17 - CC - camillie@i3s.unice.fr 15

Previously...

Tests strategies

Unit
Test

Integration Test

Validation Test

Code

Conception

Requirements

05/01/17 - CD - duffau@i3s.unice.fr 17

Software Testing by example

@AfterClass / @BeforeClass

@After / @Before

@Test

assert*

fail()

expected

JUnit Tag words

05/01/17 - CD - duffau@i3s.unice.fr 19

Chose wisely !

20

AssertEquals

AssertTrue

AssertNullThink about:

● Correctness

● Readability

● Extensibility

Towards more complete tests

/**
* Definit une nouvelle {@link Shape} dans le service.
*
* @param shape - L'objet {@link Shape} a ajouter
* @throws ShapeAlreadyExistException si une forme avec le meme identifiant
etait deja presente.
*/

● Parameters: Test edge cases
○ What happens if I give a ‘null’ Shape, or a Shape with only 1, 2, or

no vertex? Should it be added?
=> Writing tests helps us realize that our documentation,
specifications or implementation is not good enough
○ Maybe an InvalidShapeException could be thrown, or a boolean

returned as false if the shape was not added bc it was invalid 21

The Javadoc should be all we need to write the tests!

Test exceptions - Another way

@Test(expected = ShapeAlreadyExistException.class)
public void testCreateAlreadyExistingShape()
{
 int nb = ShapesProvider. getAllShapes().size();
 // We know star is already in here
 Shape s = new Shape(“star”);
 ShapesProvider. createShape(s);
}

22

We can create a separate test method for this case!

Here, the test will fail if the exception is not thrown, and pass otherwise.
● The @Test(expected …) shows directly what the test is for
● It’s cleaner and easier to read

Unit Tests
Quality

Right BICEP and CORRECT
a.k.a Computer Scientists love acronyms

24

Reference ->

Go read it!
(really!)

Also based on Sebastien Morsser course

Strong tests with (Right) BICEP

● Right: are the results right?

● Boundaries: are the boundary conditions CORRECT?

● Inverse relationships: can you check inverse relationships?

● CrossCheck: can you cross-check results using other means?

● Error: can you force error conditions to happen?

● Performance: are performance characteristics within bounds?

13/03/17 - CC - camillie@i3s.unice.fr 25

“Right” tests

13/03/17 - CC - camillie@i3s.unice.fr 26

● The basis of all tests:
○ Check that the program behaves as expected
○ Check that the program output it correct

● The square root example:

Specification “Right” test

Boundary conditions

13/03/17 - CC - camillie@i3s.unice.fr 27

● Boundaries are where error happens !

● = It’s among the most valuable things to test !

 √0 = ? √∞ = ?
student.email = "foo@bar"

person.age = -2
room.seats = 42,000

file.path = "#$%&*^@#"

Inverse Relationships

13/03/17 - CC - camillie@i3s.unice.fr 28

a <- √343
a² = 343

● We don’t care about the value of a

● What’s important is to check the property x² = √x

Cross-checking

13/03/17 - CC - camillie@i3s.unice.fr 29

● Check against existing libraries or tools if possible

Error

13/03/17 - CC - camillie@i3s.unice.fr 30

● Thoroughly explore error cases
● Expect the unexpected

Performance

13/03/17 - CC - camillie@i3s.unice.fr 31

● Allows to identify performance regression

● With JUnit :

CORRECT Boundary conditions

32

● Conformance: does the value conform to an expected format?

● Ordering: is the set of values ordered or unordered as appropriate?

● Range: is the value within reasonable minimum and maximum values?

● Reference: does the code reference anything external that isn’t under

direct control of the code itself?

● Existence: does the value exist?

● Cardinality: are there exactly enough values?

● Time: is everything happening in order? At the right time? In time?

Case Study

The Dice Game Kata

34

Reference ->
https://github.com/polytechnice-si/3A-GL-DiceGame

By Sébastien Mosser and Simon Uril

https://github.com/polytechnice-si/3A-GL-DiceGame
https://github.com/polytechnice-si/3A-GL-DiceGame

Task #1: throwing a dice

35

Being able to throw a dice
Acceptance criteria: The dice has 6 faces, and returns a random number in [1,6].

Check 1: We can roll a die

public class DiceTest {

 Dice theDice;

 @Test
 public void rollReturnsAValue() {
 theDice = new Dice(new Random());
 for(int i = 0; i < 100; i++) {
 int result = theDice.roll();
 assertTrue(result >= 1);
 assertTrue(result <= 6);
 }
 }
}

36

Check 2: Invalid roll die values

● roll() should throw an exception if the rolled value is not
between 1 and 6

● The current implementation and available tools don’t
allow us to test this directly

=> What should we do?

37

Check 2: Naive solution

● Implement a specific Random
class NoRandom extends Random {
 int value;
 public NoRandom(int v) { this.value = v; }
 @Override
 public int nextInt(int m) { return value; }
}

● Test the some cases
@Test(expected = RuntimeException. class)
public void identifyBadValuesGreaterThanNumberOfFaces() {
 theDice = new Dice(new NoRandom(7));
 theDice.roll();
}
@Test(expected = RuntimeException. class)
public void identifyBadValuesLesserThanOne() {
 theDice = new Dice(new NoRandom(-1));
 theDice.roll();
}

38

Check 2: Naive solution

● Implement a specific Random
class NoRandom extends Random {
 int value;
 public NoRandom(int v) { this.value = v; }
 @Override
 public int nextInt(int m) { return value; }
}

● Overriding classes for tests does
not make any sense

=> Another suggestion?

39

Check 2: Using mocks

● We only need to consifer a Random where we can change
the behavior depending on our contect

● Mock Objects are exactly made for that !
@Test(expected = RuntimeException.class)
public void identifyBadValuesGreaterThanNumberOfFaces() {
 Random tooMuch = mock(Random.class);
 when(tooMuch.nextInt(anyInt())).thenReturn(7);

 theDice = new Dice(tooMuch);
 theDice.roll();
}

40

Task #2: associate a die to a player

41

Associating a dice roll result to a given player
Acceptance criteria: A player has a name, and exposes the value obtained from
her very own dice

Check: Player can roll a die

public class PlayerTest {

 Player p;

 @Test
 public void lastValueNotInitialized() {
 p = new Player("John Doe", new Dice(new Random()));
 assertEquals(p.getLastValue(), -1);
 }

 @Test
 public void lastValueInitialized() {
 p = new Player("John Doe", new Dice(new Random()));
 p.play();
 assertNotEquals(p.getLastValue(), -1);
 }
}

42

Check: Player can roll a die

● -1 when the die was never rolled?

43

● -1 when the die was never rolled?

● Magic number
● An external developer cannot

understand what this value means
● It’s part of our technical debt

=> Any suggestion?

Check: Java 8 Optionals

● Manipulate objects that may or may not be defined

44

Check: Java 8 Optionals

● Only need to check if the value is defined

45

@Test
public void lastValueNotInitialized() {
 p = new Player("John Doe", new Dice(new Random()));
 assertFalse(p.getLastValue().isPresent());
}

@Test
public void lastValueInitialized() {
 p = new Player("John Doe", new Dice(new Random()));
 p.play();
 assertTrue(p.getLastValue().isPresent());
}

Task #3: Take max of two rolls

46

● Redefine the play method

The player throws two dices and keeps the max
Acceptance criteria: the dice is only thrown twice, and only the max value is kept.

Check 1: Player rolls only twice

● Mock Objects allow measure the execution flow that
goes through a given mock when a method is called

@Test
public void throwDiceOnlyTwice() {
 Dice d = mock(Dice.class);

 p = new Player("John Doe", d);
 p.play();

 verify(d, times(2)).roll();
}

47

Check 2: Player takes max value

● Like before, we control the values returned by our Mock

@Test
public void keepTheMaximum() {
 Dice d = mock(Dice.class);
 p = new Player("John Doe", d);

 when(d.roll()).thenReturn(2).thenReturn(5);
 p.play();
 assertEquals(p.getLastValue().get(), new Integer(5));

 when(d.roll()).thenReturn(6).thenReturn(1);
 p.play();
 assertEquals(p.getLastValue().get(), new Integer(6));
}

48

Task #4: Play a Game of Dice

49

A Game of Dice is a two
players game, and the player who
obtains the max value on a dice
roll win (ex-aequo implies to
restart the game, no winner after
5 ex-aequo matches)

Acceptance criteria:the game
exposes a winner, according to the
game rules

Check 1: No winner case

● Mock dice to always return 1
● “Spy” on player to check number of calls

@Test
public void noWinnerAfter5Attempts() {
 Dice single = mock(Dice.class);
 when(single.roll()).thenReturn(1);

 Player p1 = spy(new Player("John", single));
 Player p2 = spy(new Player("Jane", single));

 g = new Game(p1,p2);
 assertFalse(g.play().isPresent());
 verify(p1, times(5)).play();
 verify(p2, times(5)).play();
} 50

Check 2: Winner case

● Like before, we control the values returned by our Mock
objects

@Test
public void andTheWinnerIs() {

 Player p1 = mock(Player.class);
 when(p1.getLastValue()).thenReturn(Optional.of(new Integer(5)));

 Player p2 = mock(Player.class);
 when(p2.getLastValue()).thenReturn(Optional.of(new Integer(2)));

 g = new Game(p1,p2);
 assertEquals(p1, g.play().get());
}

51

● Mock objects to control return values.

● Mock objects to monitor execution flow.

● Spy objects to monitor execution flow.

● Optionals to manipulated not always defined objects.

What we’ve seen - Summary

52

?

