
27/09/2016

Cécile Camillieri

1

LP IDSE - GL

Advanced versioning

Previously...

Share changes

Trace changes

Rollback changes

Source Code Versioning

27/09/16 - CC - camillie@i3s.unice.fr 3

Offline work, branches, and more...

Centralized vs Distributed

06/09/16 - CC - camillie@i3s.unice.fr 4

add -> commit

1 Repository

 > CVS, SVN, ...

add -> commit -> push

N repositories : 1 per user

 > Git, Mercurial, ...

Today...

Using git (101)

Handling conflicts

Using branches

Outline

27/09/16 - CC - camillie@i3s.unice.fr 6

Git 101

● git clone {url} -> Get an existing git repository
● git init -> Create a new local repository

Git basic commands

27/09/16 - CC - camillie@i3s.unice.fr 8

All information about the repository

clone

init

● git add {file} -> Stage a file for the next commit
● git status -> Status of the local repository

Git basic commands

27/09/16 - CC - camillie@i3s.unice.fr 9

Added for next commit

Not added for next commit

Not known by git and not
added for next commit

Up to date with remote

add

status

● git add {file} -> Stage a file for the next commit
● git status -> Status of the local repository

Git basic commands

27/09/16 - CC - camillie@i3s.unice.fr 10

add

status

Can add only part of a file

● git commit -m {msg} -> Create a new (local) commit
● git push -> Send commits to the remote repository
● git pull -> Get changes from the remote repository

Git basic commands

27/09/16 - CC - camillie@i3s.unice.fr 11

One commit to push

● git log -> See commits history (local)

Git basic commands

27/09/16 - CC - camillie@i3s.unice.fr 12

latest

oldest

● git clone {url} -> Get an existing git repository
● git init -> Create a new local repository

● git add {file} -> Stage a file for the next commit
● git commit -m {msg} -> Create a new (local) commit
● git push -> Send commits to the remote repository
● git pull -> Get changes from the remote repository

● git status -> Status of the local repository
● git log -> See commits history of the local repository

For more : http://git-scm.com

Git basic commands

27/09/16 - CC - camillie@i3s.unice.fr 13

● .gitignore file to define files ignored by git
-> not shown when doing ‘git status’

● Should not push :
- hidden files (most of the time) .*
- compiled code *.class bin/ target/ etc.
- IDE settings .eclipse/ *.iml etc.

● You should push :
- your gitignore file
- source, resources, doc, etc.

Only commit what is necessary

27/09/16 - CC - camillie@i3s.unice.fr 14

Remote
vs

local

History

27/09/16 - CC - camillie@i3s.unice.fr 16

second
commit

REMOTE

first commit

t t+1

History

27/09/16 - CC - camillie@i3s.unice.fr 17

second
commit

REMOTE

HEAD (local)

first commit

t t+1

History

27/09/16 - CC - camillie@i3s.unice.fr 18

second
commit

REMOTE

HEAD (local)

first commit

t t+1

pull

History

27/09/16 - CC - camillie@i3s.unice.fr 19

second
commit

REMOTE

HEAD (local)

first commit new commit

t t+1 t+2

add
commit

History

27/09/16 - CC - camillie@i3s.unice.fr 20

second
commit

REMOTE

HEAD (local)

first commit new commit new commit 2

t t+1 t+2 t+5

add
commit

History

27/09/16 - CC - camillie@i3s.unice.fr 21

second
commit

REMOTE

first commit

HEAD (local)

new commit new commit 2

t t+1 t+2 t+5

push

History

27/09/16 - CC - camillie@i3s.unice.fr 22

second
commit

REMOTE

LOCAL (user1)

first commit new commit new commit 2

LOCAL (user2)

t t+1 t+2 t+5

History

27/09/16 - CC - camillie@i3s.unice.fr 23

second
commit

REMOTE

LOCAL (user1)

first commit

new commit new commit 2

some commit

push

t t+1

t+3

t+2 t+5

LOCAL (user2)

add
commit

History

27/09/16 - CC - camillie@i3s.unice.fr 24

second
commit

REMOTE

LOCAL (user1)

first commit

new commit new commit 2

LOCAL (user2)

some commit

t t+1

t+3

t+2 t+5

push

Handling
conflicts

Pull before push

27/09/16 - CC - camillie@i3s.unice.fr 26

second
commit

REMOTE

LOCAL (user1)

first commit

new commit new commit 2

LOCAL (user2)

some commit

t t+1

t+3

t+2 t+5

pull

Different files OR
Different part of same file

Automatic Merge

Merge commit is created
automatically

Auto merging

27/09/16 - CC - camillie@i3s.unice.fr 27

Same part of same file

Automatic Merge fail

Need to Resolve conflicts
manually

Add and create merging
commit

Merge conflicts

27/09/16 - CC - camillie@i3s.unice.fr 28

No conflicts

Conflicts

Resolving conflicts

27/09/16 - CC - camillie@i3s.unice.fr 29

Code coming from the
local repository (HEAD)

Code coming from the
remote repository

add! commit push

choose
what to keep

Before merging

27/09/16 - CC - camillie@i3s.unice.fr 30

second
commit

REMOTE

LOCAL (user1)

first commit

new commit new commit 2

LOCAL (user2)

some commit

t t+1

t+3

t+2 t+5

pull

Merging result

27/09/16 - CC - camillie@i3s.unice.fr 31

second
commit

first commit

new commit 2

t

new commit some commit merge commit

LOCAL (user2)

REMOTE

LOCAL (user1)

new commit new commit 2

t+2 t+5

t+1

t+3 t+8t+5t+2

Merging result

27/09/16 - CC - camillie@i3s.unice.fr 32

second
commit

REMOTE

first commit

LOCAL (user1)

new commit 2

t t+1

new commit

t+2

some commit

t+3

merge commit

t+8t+5

LOCAL (user2)

push

Merging result

27/09/16 - CC - camillie@i3s.unice.fr 33

second
commit

REMOTE

first commit

LOCAL (user1)

new commit 2

t t+1

new commit

t+2

some commit

t+3

merge commit

t+8t+5

LOCAL (user2)

pull

Branches
& Tags

Branches

27/09/16 - CC - camillie@i3s.unice.fr 35

time

 master

 nice feature

 very nice feature

● Work on different features at the same time

● Switch between features/versions/releases

● Merge all changes on the same branch in the end

● Always have a stable version

Branches

27/09/16 - CC - camillie@i3s.unice.fr 36

● git checkout -> Switch to a different branch/version
● git branch -> Manage branches

Git basic commands (continued)

27/09/16 - CC - camillie@i3s.unice.fr 37

Go back to master

Create and switch to
new branch

See all branches

On branch master

● git merge {branch} -> Merge the given branch into the current one

Git basic commands (continued)

27/09/16 - CC - camillie@i3s.unice.fr 38

Go back to master

Create commit on ‘new’

Merge ‘new’ into ‘master’

Updated history

pull = merge remote branch into current local branch

git push origin master
= merge local branch into the remote (origin) master branch

git pull origin master
= merge the remote (origin) master branch into local branch

Git basic commands (updated)

27/09/16 - CC - camillie@i3s.unice.fr 39

● git tag -a v2.1 -> Create tag at current commit

● git push origin v2.1 -> push tag v2.1
● git push origin --tags -> push all tags

● git checkout -b version2-1 v2.1
-> switch to a new branch at tag v2.1

Tagging & releases

27/09/16 - CC - camillie@i3s.unice.fr 40

 master v2.1 v2.0

Some
branching
solutions

● master branch should always be stable: releases

● Development on a develop branch

● Hotfixes can be made on master

Basic branching

27/09/16 - CC - camillie@i3s.unice.fr 42

More advanced branches

27/09/16 - CC - camillie@i3s.unice.fr 43

● master branch for releases

● Development on a develop branch

● A branch for the most important/risky features

● Hotfixes can be made on master

Git flow

27/09/16 - CC - camillie@i3s.unice.fr 44

● master branch for releases

● Development on a develop branch

● A branch for important features (from develop)

● Branches to prepare for releases (from develop)

● Branches for hotfixes (from master)

Git flow

27/09/16 - CC - camillie@i3s.unice.fr 45

● A set of commands to create, merge,
push, etc… branches

git flow feature start MYFEATURE
git flow feature finish MYFEATURE
git flow feature publish MYFEATURE

● Syntaxic sugar

http://danielkummer.github.io/g
it-flow-cheatsheet/

https://github.com/nvie/gitflow

http://danielkummer.github.io/git-flow-cheatsheet/
http://danielkummer.github.io/git-flow-cheatsheet/
http://danielkummer.github.io/git-flow-cheatsheet/
https://github.com/nvie/gitflow
https://github.com/nvie/gitflow

Still no trick that solves everything

Sum-up

Share changes

Trace changes

Rollback changes

Source Code Versioning

27/09/16 - CC - camillie@i3s.unice.fr 48

● git clone {url} -> Get an existing git repository
● git init -> Create a new local repository

● git add {file} -> Stage a file for the next commit
● git commit -m {msg} -> Create a new (local) commit
● git push origin {branch} -> Send commits to the remote repository
● git pull origin {branch} -> Get changes from the remote repository

● git checkout -> Switch to a different branch/version
● git branch -> Manage branches
● git merge {branch} -> Merge the given branch into the current one

● git status -> Status of the local repository
● git log -> See commits history of the local repository

For more : http://git-scm.com

Git basic commands

27/09/16 - CC - camillie@i3s.unice.fr 49

● Commit often, small.

● Always add commit messages.

● .gitignore: don’t commit unnecessary files.

● Branch your IDE directly on the local repository folder.

● Don’t forget to add files when resolving merge conflicts.

● Use branches (at least the master/develop model).

Best practices

27/09/16 - CC - camillie@i3s.unice.fr 50

?

