
Cours LPSIL

2013

� Test Types

� Tooling and Strategy

2LPSIL IDSE - Guilhem Molines

� This slide is not at the end

� Ask questions when they come up. If it’s out
of place, we’ll list it on a dedicated
whiteboard page

3LPSIL IDSE - Guilhem Molines

� What is it?

4LPSIL IDSE - Guilhem Molines

� What is it?

� No defect ?

5LPSIL IDSE - Guilhem Molines

� What is it?

� No defect?

� or….

� Known defects?

6LPSIL IDSE - Guilhem Molines

� In theory, we’d like software with zero bug

� However, bug-free software is hardly
achievable, given:
◦ Time and financial constraints

◦ Human limit vs. System size

◦ Pressure of the competition

7LPSIL IDSE - Guilhem Molines

� Quality’s purposes are to:
◦ Know and document bugs

◦ Verify them for regression

◦ Find workarounds

◦ Feed more requirements (bugs show product
usage)

8LPSIL IDSE - Guilhem Molines

� Measurements, indicators, monitoring
◦ -> Nov. 15th

� Defect management
◦ -> Oct. 4th

� Testing
◦ -> Today

9LPSIL IDSE - Guilhem Molines

� Several methodologies widely used:
◦ Waterfall
◦ Iterative
◦ a combination of both (short iterative V-cycles)
◦ eXtreme Programming, etc.

� Each allocates a large amount of time to
testing phases

� Pareto law: 80% of the code written to handle
error cases.

LPSIL IDSE - Guilhem Molines 10

� Exercice

11LPSIL IDSE - Guilhem Molines

� Unit Tests
� Integration Tests
� GUI Tests
� Non-regression Tests
� Coverage Tests
� Load Tests
� Stress Tests
� Performance Tests
� Scalability Tests
� Reliability Tests
� Volume Tests

12LPSIL IDSE - Guilhem Molines

� Volume Tests
� Usability Tests
� Security Tests
� Recovery Tests
� L10N/I18N Tests
� Accessibility Tests
� Installation/Configuration

Tests
� Documentation Tests
� Platform testing
� Samples/Tutorials Testing
� Code inspections
� …

� PurposePurposePurposePurpose: test a single class, or even a single
method

� Why?Why?Why?Why?
◦ Contract compliance

◦ Regression

◦ Bug isolation

◦ Documentation (test code is a usage sample)

13LPSIL IDSE - Guilhem Molines

� How to perform this type test?
◦ Invoke each method of the class

◦ With various, representative sets of data

◦ Capture the returned values

◦ Check against expected results

◦ Record success / failure

14LPSIL IDSE - Guilhem Molines

� How to automate?
◦ Write a java method for each tested method

◦ Have it perform with various data sets

◦ Dump results in some file (E.g.: xml)

◦ Report from result file

� the most interesting part is the body of the
test method. The rest would be best provided
by a framework

15LPSIL IDSE - Guilhem Molines

� Environment Example: jUnit
� Provides:
◦ Test base class, with assertion utilities
� assertTrue, assertNotNull, assertEquals, etc.

◦ Mechanism for setting up each test, and cleaning
after it => tests executes in the same, known
context
◦ Test suite assembling
◦ Reporting, with xml and html report generation
◦ ant integration
◦ GUI
◦ Integration in most IDEs (E.g.: Eclipse, IntelliJ, …)

16LPSIL IDSE - Guilhem Molines

public class IlrCVSTestBase extends TestCaseTestCaseTestCaseTestCase {{{{
public IlrCVSTestBase(String testName) {
super(testName);
. . .

}
…}
public class IlrRepositoryRelationTestBase extends IlrCVSTestBase {

private File moduleDirectoryUser1;
private File moduleDirectoryUser2;
private IlrRepository repository1 = new IlrBrmRepository();
private IlrRepository repository2 = new IlrBrmRepository();

public IlrRepositoryRelationTestBase(String testName, String aPropertyFileName) {
super(testName, aPropertyFileName);
assertTrue(getCVSClient().isConnectionPossible(getCVSRoot(0), getPassword(0)));

assertTrue(getCVSClient().isConnectionPossible(getCVSRoot(1), getPassword(1)));
getMediator(0).setCVSPassword(getPassword(0));
getMediator(1).setCVSPassword(getPassword(1));

}

17LPSIL IDSE - Guilhem Molines

protected void setUpsetUpsetUpsetUp() () () () throws Exception {
super.setUp();
moduleDirectoryUser1 = IlrCVSUtil.addFolder(null, getLocalDestinationPath(0));
assertNotNull("moduleDirectory for user 1 is null", getModuleDirectoryUser1());
moduleDirectoryUser2 = IlrCVSUtil.addFolder(null, getLocalDestinationPath(1));
assertNotNull("moduleDirectory for user 2 is null", getModuleDirectoryUser2());
moduleDirectoryUser1 = checkoutRepository(repository1, getMediator(0));
assertNotNull("Couldn't check-out repository for user 1", getModuleDirectoryUser1());
moduleDirectoryUser2 = checkoutRepository(repository2, getMediator(1));
assertNotNull("Couldn't check-out repository for user 2", getModuleDirectoryUser2());

}
protected void tearDowntearDowntearDowntearDown()()()() throws Exception {

getRepository1().getPersistenceManager().close();
getRepository2().getPersistenceManager().close();
assertTrue(IlrCVSUtil.deleteFile(getModuleDirectoryUser1()));
assertTrue(IlrCVSUtil.deleteFile(getModuleDirectoryUser2()));
super.tearDown();

}

18LPSIL IDSE - Guilhem Molines

protected IlrDynamicObjectModel findBom(IlrRepository aRepository) {
IlrRefPackage refPack = aRepository.getExtent("Application");
assertNotNullassertNotNullassertNotNullassertNotNull(refPack);
IlrLibrary lib = (IlrLibrary) refPack.findModelElement("Template Library");
assertNotNullassertNotNullassertNotNullassertNotNull(lib);
IlrDynamicObjectModel bom = (IlrDynamicObjectModel)lib.getBOM();
assertNotNullassertNotNullassertNotNullassertNotNull(bom);
return bom;

}

protected void changeRelationsABIntoACAndForScenario1(IlrElement elem1A,
IlrElement elem1B, IlrElement elem1C) throws IlrRepException {
IlrStructuralFeature typeSF = elem1A.getStructuralFeature(IlrConstants.TYPE_REFERENCE);
assertNotNullassertNotNullassertNotNullassertNotNull("Can't find type Structural Feature", typeSF);
Object oldValue = elem1A.getValue(typeSF);
assertTrueassertTrueassertTrueassertTrue("old value should be elem B", oldValue == elem1B);
elem1A.setValue(typeSF,elem1C);
Object newValue = elem1A.getValue(typeSF);

assertTrueassertTrueassertTrueassertTrue("new value should be elem C", newValue == elem1C);

}

19LPSIL IDSE - Guilhem Molines

public static TestSuite suite() {suite() {suite() {suite() {
TestSuite suite = new TestSuite("IlrUpdateTestCase");
suite.addTest(new IlrUpdateTestCase("testUpdateOnModifiedFile"));
suite.addTest(new

IlrUpdateTestCase("testUpdateOnUnmodifiedFolder"));
suite.addTest(new IlrUpdateTestCase("testUpdateOnDeletedFolder"));
suite.addTest(new

IlrUpdateTestCase("testUpdateCleanOnDeletedFolder"));
suite.addTest(new

IlrUpdateTestCase("testUpdateFileWithMissingRevision"));
suite.addTest(new IlrUpdateTestCase("testUpdateFileWithRevision"));
suite.addTest(new

IlrUpdateTestCase("testUpdateCleanFolderOnModifiedFolder"));
suite.addTest(new IlrUpdateTestCase("testUpdateOnConflictFile"));
suite.addTest(new IlrUpdateTestCase("testUpdateReadOnlyFile"));
return suite;

}

20LPSIL IDSE - Guilhem Molines

� ExampleExampleExampleExample:
public class FooTest

void setUp();
void tearDown();
void testFunctionA();
void testFunctionB();

� LifecycleLifecycleLifecycleLifecycle: what the test runner does:
FooTest f = new FooTest();
f.setUp();
f.testFunctionA();
f.tearDown();
f.setUp();
f.testFunctionB();
f.tearDown();

21LPSIL IDSE - Guilhem Molines

ant integration:ant integration:ant integration:ant integration:
<target name="run.junit">

<property name="junit.includes" value="**/*Tests.class" />
<junitjunitjunitjunit printsummaryprintsummaryprintsummaryprintsummary="yes" fork="yes" ="yes" fork="yes" ="yes" fork="yes" ="yes" fork="yes" maxmemorymaxmemorymaxmemorymaxmemory="512m" ="512m" ="512m" ="512m"

haltonfailurehaltonfailurehaltonfailurehaltonfailure="no">="no">="no">="no">
<classpath>

<pathelement location="${classes}"/>

<pathelement location="${scripts.dir}/lib/junit.jar"/>
<pathelement location="${scripts.dir}/lib/dom4j-1.4-dev-8.jar"/>

<pathelement location="${scripts.dir}/lib/ant-testutil.jar"/>
<pathelement location="${integration.dir}/lib/dom.jar"/>
<pathelement location="${integration.dir}/lib/j2ee-1.3.1.jar"/>

</classpath>
<jvmarg value="-Dproperties.file=${basedir}/properties.file"/>

<batchtest todir="${tests.reports.dir}">
<fileset dir="${classes}" includes="${junit.includes}“ excludes="${junit.excludes}" />

</batchtest>
<formatter type="xml"/>

</junit>
</target>

22LPSIL IDSE - Guilhem Molines

Reporting:Reporting:Reporting:Reporting:

<target name="report" >

<junitreportjunitreportjunitreportjunitreport todir="${tests.reports.dir}">

<fileset dir="${tests.reports.dir}“
includes="TEST-*.xml" />

<report todir="${tests.reports.dir}" />

</junitreport>

</target>

23LPSIL IDSE - Guilhem Molines

24LPSIL IDSE - Guilhem Molines

� PurposePurposePurposePurpose: test the system (or part thereof)
after integration of several components

� Why?Why?Why?Why?
◦ Although each component may work well

separately, they may not operate correctly together,
due to (among other reasons):

� Communication issues

� Synchronization issues

� Different data ranges / data types

� Misunderstanding of contracts

� Bugs introduced during integration

25LPSIL IDSE - Guilhem Molines

� How to perform this type test?
◦ Same as unit-tests, but:

� on (a subset of) the whole system (that is, theresult of
a (partial) integration)

� Perform scenarios closer to real-life situation

◦ Issue is often the GUI, so to work around this:

� Several people stuck in a room typing all day long
following written scenarios

� Bypass the GUI by plugging the test tool at the layer
just below it. GUI will then have to be tested separately

26LPSIL IDSE - Guilhem Molines

� White / black box ?
◦ Black box:

� Define input and expected output.

� Input data into system

� Compare actual output with expected result

� This can be done without actual knowledge of how the
system is built => easy to outsource or delegate to
others

27LPSIL IDSE - Guilhem Molines

� White / black box ?
◦ White box:

� Same, but also look at the internal state of the system
along the data path

� Usually, can only be performed by the writers of the
system:

� Biased tests (they know the happy path)

� Utilize resources that may be needed elsewhere => tests
not done thoroughly

� Often needed to understand complex scenario
(E.g.:debugging)

28LPSIL IDSE - Guilhem Molines

� Tools:
◦ Tests performed by tester teams:

� Full duplicate of production environment: same
database, app servers, etc.

� Tools to quickly restore system in a “clean” state, E.g.:

DB scripts, image drive, etc.

� Internal Bug Tracking: BugZilla, ad hoc database

� Reporting: spreadsheet, reporting component of
dedicated bug tracking tool.

29LPSIL IDSE - Guilhem Molines

� Tools:
◦ Tests performed by dev teams:

� Ideally, in test environment as close as possible to
production environment. Often, performed in dev
environment, especially when testing partial

integration.

� Same type of tools as for unit-testing. Often beefed-
up with scenarios.

� For example, with jUnit, one can build scenarios with
test suites, each step being a unit-test.

� Similar tracking and reporting needs and tools

30LPSIL IDSE - Guilhem Molines

� Tools:
◦ When GUI is involved

� “Learning robots”: record UI interaction in a
(proprietary) scripting language, then replay and
compare results with expected, at UI level

◦ Often, ability to write directly in the dedicated
scripting language.

◦ Not very robust to change, often require manual
intervention

31LPSIL IDSE - Guilhem Molines

� Purpose:Purpose:Purpose:Purpose: detect regressions introduced
between two releases of the system

� Why?Why?Why?Why?
◦ Regression DO happen

◦ Side-effects

◦ Specification changes

◦ Bug correction leads to introduction of other bugs

32LPSIL IDSE - Guilhem Molines

� What tests can be used for regression testing:
◦ Unit-tests, integration tests, pretty much anything

that can easily be automated

◦ The more the better

� How to perform this type test?
◦ Run suites of tests against two releases of the

software, with the same data set

◦ Compare tests results

◦ Log regression in bug tracking system

� Shows how important CM is

33LPSIL IDSE - Guilhem Molines

� PurposePurposePurposePurpose: Find out is the system is really
usable by its intended audience

� Why?Why?Why?Why?
◦ System is built by developers … but used by

Business Users

◦ Even minimal UI changes can confuse business
users with years of experience of “doing it this way”

◦ System has to face real-life usage

34LPSIL IDSE - Guilhem Molines

� HowHowHowHow: Almost impossible to automate

� Tips:Tips:Tips:Tips:
◦ Involve ergonomic specialists early in the project

◦ Use reusable, standardized UI components

◦ Take performance into account: a slow responding
system won’t be accepted easily

◦ Have Business Users test early on UI mockups

35LPSIL IDSE - Guilhem Molines

� HowHowHowHow: Almost impossible to automate

� Tips:Tips:Tips:Tips:
◦ Involve ergonomic specialists early in the project

◦ Use reusable, standardized UI components

◦ Take performance into account: a slow responding
system won’t be accepted easily

◦ Have Business Users test early on UI mockups

36LPSIL IDSE - Guilhem Molines

� ToolsToolsToolsTools: Eye tracking

37LPSIL IDSE - Guilhem Molines

� Purpose:Purpose:Purpose:Purpose: test system performance, both
globally (from a user transaction prospective)
and locally (each function, each resource)

� Why?Why?Why?Why?
◦ User responsiveness (hence, acceptance)

◦ Hardware costs

◦ Detect resource contention issue that may only
reveal in production

38LPSIL IDSE - Guilhem Molines

How to perform this type test?

� Globally
◦ Perform test scenarios and stopwatch them
� Manually (user testing and reporting times + subjective

feedback)

� Automated: frameworks such as HttpUnit, WebStressTool,
etc.

◦ Take into account system operative mode, E.g.:
transactional, nightly batches

◦ Measure against hardware dimensions and expected /
worst case load

39LPSIL IDSE - Guilhem Molines

How to perform this type test?

� Locally
◦ Instrument code at method level, using profilers

(YourKit, OptimizeIt, JProbe, Jfluid, etc.)

◦ Log: traces should be time stamped.

◦ At resource level, E.g.: filter queries to DB, measure
throughput against cpu usage, etc.

40LPSIL IDSE - Guilhem Molines

� Exercice: what is the difference?

41LPSIL IDSE - Guilhem Molines

� Purpose: Purpose: Purpose: Purpose: test system performance
degradation under load increase

� Why?Why?Why?Why?
◦ Ideally, the system performance should be linear

with load

◦ Hardware costs forecast: if usage double, will
hardware costs double as well, or more ?

◦ Detect algorithmic issues, poorly coded functions

42LPSIL IDSE - Guilhem Molines

How to perform this type test?

� Stress-load the system
◦ Test scenarios with simulated heavy loads

◦ Make sure the test clients are not the bottlenecks
themselves: sufficient hardware, dimension stress test
environment

� Plot performance vs. load and establish trend:
linear, exponential ?

� Identify resource contention. For example, an
app-server cluster with a single, slow database

43LPSIL IDSE - Guilhem Molines

� Exercice: what is the difference?

44LPSIL IDSE - Guilhem Molines

� What type of coverage ?
◦ Lines of code

◦ Platforms

◦ Features

45LPSIL IDSE - Guilhem Molines

� PurposePurposePurposePurpose: : : : ensure the system can be translated
to other languages

� Why?Why?Why?Why?
◦ To detect hard-coded pieces of text

◦ To check for icons/images with local meaning

46LPSIL IDSE - Guilhem Molines

� HowHowHowHow::::

◦ Using a pseudo-locale

◦ Mostly manual process

47LPSIL IDSE - Guilhem Molines

� PurposePurposePurposePurpose: : : : ensure the system can be operated
once translated to another language

� Why?Why?Why?Why?
◦ To detect if translations mean something usable

◦ To verify that translation didn’t cause any
regression

48LPSIL IDSE - Guilhem Molines

� HowHowHowHow::::

◦ Functional scenarios, manual

◦ Requires native speakers

49LPSIL IDSE - Guilhem Molines

� PurposePurposePurposePurpose: : : : ensure the system can be operated
by people with disabilities

� What?What?What?What?
◦ Color-blind -> high contrast display

◦ No-mouse operation

◦ Zoomable fonts

50LPSIL IDSE - Guilhem Molines

� PurposePurposePurposePurpose: : : : ensure the system is documented, in all
supported languages

� What?What?What?What?
◦ Documentation can be displayed

◦ Doc is complete, in the right languages

◦ Doc snapshots match real software

◦ …

51LPSIL IDSE - Guilhem Molines

� Recurrent Peer reviews

� Look at other developer code and spot:
◦ awkward code

◦ unnecessarily complex code

◦ potential errors

◦ sub-optimal algorithms

52LPSIL IDSE - Guilhem Molines

� Purpose:Purpose:Purpose:Purpose: test system security, as well as the
(in)ability of the system to give access to
other systems

� Why?Why?Why?Why?
◦ Weakest link of the chain

◦ Hardware costs

◦ Detect resource contention issue that may only
reveal in production

53LPSIL IDSE - Guilhem Molines

� Why ? video

54LPSIL IDSE - Guilhem Molines

� Test Types

� Tooling and Strategy

55LPSIL IDSE - Guilhem Molines

� After development is done?

� During the development?

� Or even before?

� And/or

� Once product is released
◦ Beta version

◦ Regression testing on fixpacks
◦ Customer scenarios

� Cost: 1x, 10x, 100x, 1000x, 10000x

56LPSIL IDSE - Guilhem Molines

� Unit-tests
◦ At module level

� Integration tests
◦ Works best with continuous integration

� Regression tests
◦ All along

� System tests
◦ Dedicated phase

� Acceptance tests
◦ Before delivery

57LPSIL IDSE - Guilhem Molines

� Beta program needs be managed

� Customer cases
◦ Show product usage

◦ Exhibit scenarios we may not have used for testing

58LPSIL IDSE - Guilhem Molines

� New features

� Things customer are going to see first
◦ Installers

◦ Tutorials

◦ documentation

� Things that have high impact if they break

� Code commits impact analysis

59LPSIL IDSE - Guilhem Molines

� Testers

� But also

� Developers

� Doc writers

� Product managers

� Customers…

60LPSIL IDSE - Guilhem Molines

� Tooling
◦ Unit-test: jUnit, Nunit, HttpUnit, Mock Objects, …
◦ Integration: jUnit report
◦ UI Robots: QFTest, Selenium
◦ Coverage: Clover
◦ Test plan manamgent: RQM, Mercury

� Frequency
◦ Unit-tests: daily if not hourly
◦ Integration tests: ideally daily
◦ System, usability, etc: at least once per iteration
◦ The more the merrier

61LPSIL IDSE - Guilhem Molines

� Coverage
◦ Line coverage

◦ Platforms

� OS, DB, browser, JVM version, etc.

◦ Data ranges

� Test case generation

� Combinatorial madness
◦ Need smart choices

◦ Need to document what was tested

62LPSIL IDSE - Guilhem Molines

63LPSIL IDSE - Guilhem Molines

� Defect Management (Oct 4th)

64LPSIL IDSE - Guilhem Molines

