La place des tests

Cours LPSIL
2014

Agenda

» Test Types
» Tooling and Strategy

Questions?

» This slide is not at the end

» Ask questions when they come up. If it’s out
of place, we’ll list it on a dedicated
whiteboard page

LPSIL IDSE - Guilhem Molines

Quality

» Whatis it?

Quality

» What is it?
» No defect?

Quality

» What is it?

» No defect?

» Ofr....

Known defects?

v

Quality

» In theory, we’d like software with zero bug

» However, bug-free software is hardly
achievable, given:
- Time and financial constraints
> Human limit vs. System size
- Pressure of the competition

LPSIL IDSE - Guilhem Molines

Quality

» Quality’s purposes are to:
> Know and document bugs
- Verify them for regression
> Find workarounds

- Feed more requirements (bugs show product
usage)

LPSIL IDSE - Guilhem Molines

Quality Process

» Measurements, indicators, monitoring
- —=> Dec. 12th

» Defect management
> => Nov. 21th

» Testing
- -=> Today

LPSIL IDSE - Guilhem Molines

Development lifecycles

» Several methodologies widely used:

- Waterfall

> |terative

- a combination of both (short iterative V-cycles)
- eXtreme Programming, etc.

» Each allocates a large amount of time to
testing phases

» Pareto law: 80% of the code written to handle
error cases.

LPSIL IDSE - Guilhem Molines 10

Types of tests

» EXercise

11

Types of tests

VvV VvV VvV VvV VvV VvV VvV VvV VvV VvV VY

Unit Tests
Integration Tests
GUI Tests
Non-regression Tests
Coverage Tests
Load Tests

Stress Tests
Performance Tests
Scalability Tests
Reliability Tests
Volume Tests

vV VvV VvV VvV VvV VvV VY

vV Vv VvV Vv Vv

Volume Tests
Usability Tests
Security Tests
Recovery Tests
LTON/IT8N Tests
Accessibility Tests

Installation/Configuration
Tests

Documentation Tests
Platform testing
Samples/Tutorials Testing
Code inspections

LPSIL IDSE - Guilhem Molines

12

Unit testing

» Purpose: test a single class, or even a single
method
» Why?
- Contract compliance
- Regression
- Bug isolation
- Documentation (test code is a usage sample)

LPSIL IDSE - Guilhem Molines

13

Unit testing

» How to perform this type test?
- Invoke each method of the class
- With various, representative sets of data
- Capture the returned values
- Check against expected results
- Record success / failure

LPSIL IDSE - Guilhem Molines

14

Unit testing

» How to automate?

- Write a java method for each tested method
- Have it perform with various data sets

- Dump results in some file (E.g.: xml)

- Report from result file

» the most interesting part is the body of the
test method. The rest would be best provided
by a framework

LPSIL IDSE - Guilhem Molines

15

Unit testing

» Environment Example: jUunit

» Provides:
- Test base class, with assertion utilities
- assertTrue, assertNotNull, assertEquals, etc.

Mechanism for setting up each test, and cleaning
after it => tests executes in the same, known
context

Test suite assembling

Reporting, with xml and html report generation
ant integration

> GUI

> Integration in most IDEs (E.g.: Eclipse, Intelli], ...)

(0]

(0]

(0]

(0]

LPSIL IDSE - Guilhem Molines

16

Unit testing - jUnit sample

public class llrCVSTestBase extends TestCase {
public lIrCVSTestBase(String testName) {
super(testName);

3

public class llrRepositoryRelationTestBase extends llrCVSTestBase {
private File moduleDirectoryUser1;
private File moduleDirectoryUser?2;

private lIrRepository repositoryl = new lIrBrmRepository();
private llrRepository repository2 = new lIrBrmRepository();

public lIrRepositoryRelationTestBase(String testName, String aPropertyFileName) {
super(testName, aPropertyFileName);
assertTrue(getCVSClient().isConnectionPossible(getCVSRoot(0), getPassword(0)));

assertTrue(getCVSClient().isConnectionPossible(getCVSRoot(1), getPassword(1)));
getMediator(0).setCVSPassword(getPassword(0));
getMediator(1).setCVSPassword(getPassword(1));

LPSIL IDSE - Guilhem Molines 17

Unit testing - jUnit sample

protected void setUp() throws Exception {
super.setUp();
moduleDirectoryUser1 = llrCVSUtil.addFolder(null, getLocalDestinationPath(0));
assertNotNull("moduleDirectory for user 1 is null", getModuleDirectoryUser1());
moduleDirectoryUser2 = IIrCVSUtil.addFolder(null, getLocalDestinationPath(1));
assertNotNull("moduleDirectory for user 2 is null", getModuleDirectoryUser2());
moduleDirectoryUser1 = checkoutRepository(repositoryl, getMediator(0));
assertNotNull("Couldn't check-out repository for user 1", getModuleDirectoryUser1());
moduleDirectoryUser2 = checkoutRepository(repository2, getMediator(1));
assertNotNull("Couldn't check-out repository for user 2", getModuleDirectoryUser2());

}

protected void tearDown() throws Exception {
getRepository1().getPersistenceManager().close();
getRepository2().getPersistenceManager().close();
assertTrue(llrCVSUtil.deleteFile(getModuleDirectoryUser1()));
assertTrue(llrCVSUtil.deleteFile(getModuleDirectoryUser2()));
super.tearDown();

LPSIL IDSE - Guilhem Molines

18

Unit testing - jUnit sample

protected IlIrDynamicObjectModel findBom(llrRepository aRepository) {
lIrRefPackage refPack = aRepository.getExtent("Application");
assertNotNull(refPack);
lIrLibrary lib = (llrLibrary) refPack.findModelElement("Template Library");
assertNotNull(lib);
lIrDynamicObjectModel bom = (lirDynamicObjectModel)lib.getBOM();
assertNotNull(bom);
return bom;

}

protected void changeRelationsABIntoACAndForScenariol (llrElement elem1A,
lIrElement elem1B, lIrElement elem1C) throws llIrRepException {
[IrStructuralFeature typeSF = elem1A.getStructuralFeature(llrConstants.TYPE_REFERENCE);
assertNotNull("Can't find type Structural Feature", typeSF);
Object oldValue = elem1A.getValue(typeSF);
assertTrue("old value should be elem B", oldValue == elem1B);
elem1A.setValue(typeSF,elem1C);
Object newValue = elem1A.getValue(typeSF);

assertTrue("new value should be elem C", newValue == elem1QC);

LPSIL IDSE - Guilhem Molines

Unit testing - jUnit sample

public static TestSuite suite() {
TestSuite suite = new TestSuite("llrUpdateTestCase");
suite.addTest(new llrUpdateTestCase("testUpdateOnModifiedFile"));

suite.addTest(new
llrUpdateTestCase("testUpdateOnUnmodifiedFolder"));

suite.addTest(new lIrUpdateTestCase("testUpdateOnDeletedFolder"));

suite.addTest(new
llIrUpdateTestCase("testUpdateCleanOnDeletedFolder"));

suite.addTest(new
llIrUpdateTestCase("testUpdateFileWithMissingRevision"));

suite.addTest(new llIrUpdateTestCase("testUpdateFileWithRevision"));

suite.addTest(new
llIrUpdateTestCase("testUpdateCleanFolderOnModifiedFolder"));

suite.addTest(new llrUpdateTestCase("testUpdateOnConflictFile"));
suite.addTest(new lIrUpdateTestCase("testUpdateReadOnlyFile"));
return suite;

LPSIL IDSE - Guilhem Molines

Unit testing - jUnit sample

» Example:
public class FooTest
void setUp();
void tearDown();
void testFunctionA();
void testFunctionB();

» Lifecycle: what the test runner does:
FooTest f = new FooTest();

f.setUp();

f.testFunctionA();

f.tearDown();

f.setUp();

f.testFunctionB();

f.tearDown();

LPSIL IDSE - Guilhem Molines

21

Unit testing - jUnit sample

ant integration:
<target name="run.junit">
<property name="junit.includes"” value="**/*Tests.class" />
<junit printsummary="yes" fork="yes" maxmemory="512m"
haltonfailure="no">
<classpath>
<pathelement location="${classes}"/>
<pathelement location="${scripts.dir}/lib/junit.jar"/>
<pathelement location="${scripts.dir}/lib/dom4j-1.4-dev-8.jar"/>
<pathelement location="${scripts.dir}/lib/ant-testutil.jar"/>
<pathelement location="${integration.dir}/lib/dom.jar"/>
<pathelement location="%{integration.dir}/lib/j2ee-1.3.1 jar"/>
</classpath>
<jvmarg value="-Dproperties.file=${basedir}/properties.file" />
<batchtest todir="$%{tests.reports.dir}">
<fileset dir="%${classes}" includes="${junit.includes}* excludes="${junit.excludes}" />
</batchtest>
<formatter type="xml"/>
</junit>
< /target>

LPSIL IDSE - Guilhem Molines

22

Unit testing - jUnit sample

Reporting:

<target name="report" >
<junitreport todir="%{tests.reports.dir}" >
<fileset dir="%{tests.reports.dir}"
includes="TEST-*.xml" />
<report todir="%{tests.reports.dir}" />
</junitreport>
< /target>

LPSIL IDSE - Guilhem Molines

23

Unit testing - jUnit sample

D Unit Test Results. - Mozilla Firefox
Fle Edt View Go Bookmarks Tools Help

=10l x|

@~ B~ g (5¢ B8 - (L v I__J file:///D:fprifBRMServer feclipse_workspace/brmserver (client fresults/tests/index.html 3 @ Go I[QL

L3 G35 [2636 [)C37 L 1C38 | J€39 L JCG40 | JC41 | JG42 | C43 [1C44

_ | Unit Test Results. (%

‘7 -
Home Unit Test Results
; ‘ : ; '

Packages Designed for use with JUnit and Ant
floq.rules.brmserver.dfent Summaw

ilog.rules.brmserver.client.ejb &
ﬂil'm rilee hrrearvar client -2;_‘—] Tests Failures Errors Success rate Time

225 5 125 42.22% 986.657
-~

Classes =1| Note: failures are anticipated and checked for with assertions while errors are unanticipated.

BasfcReferenceTest Packages

BasicTest : .

BuafixTest Name Tests Errors Failures Time(s)
checkFolderleftRightTest

: Ider - ilog.rules.brmserver.client 148 117 © 362.316

DataProviderTest

DefinitionTest ilog.rules.brmserver.client.ejb 31 0 1 151.748
ExtendedTest 1 ilog.rules .client.ejb.locki 11 0 2 91.344
ExtendedTest

FindHierarchiesTest ilog.rules.brmserver.client.eib.populate 3 1 0 134.942
irdRuzeT ilog.rules brmserver.client.ejb service 3 0 0 1,663
GetHierarchyValueTest

GetRuleValueTest ilog.rules.brmserver.client.extend 9 a 0 103.693
HighLoadingAutoTest ilog.rules.brmserver.client.versionning 20 7 2 140.951

e —

Done 4

LPSIL IDSE - Guilhem Molines 24

Integration testing

» Purpose: test the system (or part thereof)
after integration of several components

» Why?
> Although each component may work well

separately, they may not operate correctly together,
due to (among other reasons):

- Communication issues

- Synchronization issues

- Different data ranges / data types
- Misunderstanding of contracts

- Bugs introduced during integration

LPSIL IDSE - Guilhem Molines 25

Integration testing

» How to perform this type test?

- Same as unit-tests, but:

- on (a subset of) the whole system (that is, theresult of
a (partial) integration)
- Perform scenarios closer to real-life situation

> Issue is often the GUI, so to work around this:

- Several people stuck in a room typing all day long
following written scenarios

- Bypass the GUI by plugging the test tool at the layer
just below it. GUI will then have to be tested separately

LPSIL IDSE - Guilhem Molines

26

Integration testing

» White / black box ?
- Black box:

- Define input and expected output.
- Input data into system
- Compare actual output with expected result

-+ This can be done without actual knowledge of how the
system is built => easy to outsource or delegate to
others

LPSIL IDSE - Guilhem Molines

27

Integration testing

» White / black box ?

- White box:

- Same, but also look at the internal state of the system
along the data path

- Usually, can only be performed by the writers of the
system:
- Biased tests (they know the happy path)

- Utilize resources that may be needed elsewhere => tests
not done thoroughly

- Often needed to understand complex scenario
(E.g.:debugging)

LPSIL IDSE - Guilhem Molines

28

Integration testing

» Tools:

- Tests performed by tester teams:

- Full duplicate of production environment: same
database, app servers, etc.

- Tools to quickly restore system in a “clean” state, E.qg.:
DB scripts, image drive, etc.

- Internal Bug Tracking: BugZilla, ad hoc database

- Reporting: spreadsheet, reporting component of
dedicated bug tracking tool.

LPSIL IDSE - Guilhem Molines 29

Integration testing

» Tools:

- Tests performed by dev teams:

- ldeally, in test environment as close as possible to
production environment. Often, performed in dev
environment, especially when testing partial
integration.

- Same type of tools as for unit-testing. Often beefed-
up with scenarios.

- For example, with jUnit, one can build scenarios with
test suites, each step being a unit-test.

- Similar tracking and reporting needs and tools

LPSIL IDSE - Guilhem Molines

30

Integration testing

» Tools:
- When GUI is involved

- “Learning robots”: record Ul interaction in a
(proprietary) scripting language, then replay and
compare results with expected, at Ul level

- Often, ability to write directly in the dedicated
scripting language.

- Not very robust to change, often require manual
intervention

LPSIL IDSE - Guilhem Molines

31

Regression testing

» Purpose: detect regressions introduced
between two releases of the system

» Why?
- Regression DO happen
- Side-effects
- Specification changes
- Bug correction leads to introduction of other bugs

LPSIL IDSE - Guilhem Molines

32

Regression testing

» What tests can be used for regression testing:

> Unit-tests, integration tests, pretty much anything
that can easily be automated

> The more the better

» How to perform this type test?

- Run suites of tests against two releases of the
software, with the same data set

- Compare tests results
> Log regression in bug tracking system

» Shows how important CM is

LPSIL IDSE - Guilhem Molines

33

Usability testing

» Purpose: Find out is the system is really
usable by its intended audience

» Why?
- System is built by developers ... but used by
Business Users

- Even minimal Ul changes can confuse business
users with years of experience of “doing it this way”

- System has to face real-life usage

LPSIL IDSE - Guilhem Molines

34

Usability testing

» How: Almost impossible to automate

» TIpS:
> Involve ergonomic specialists early in the project
- Use reusable, standardized Ul components

- Take performance into account: a slow responding
system won’t be accepted easily

- Have Business Users test early on Ul mockups

LPSIL IDSE - Guilhem Molines

35

Usability testing

» How: Almost impossible to automate

» TIpS:
> Involve ergonomic specialists early in the project
- Use reusable, standardized Ul components

- Take performance into account: a slow responding
system won’t be accepted easily

- Have Business Users test early on Ul mockups

LPSIL IDSE - Guilhem Molines

36

sability testing

» Tools: Eye tracking

Languages: B ™= == | § 1= Shopping trolley

Catalogue Adviceand information Why Heuga? Preduct search

Home back | help
2
o 3 Quick links
B led floc%ing solutions Wow éa 1 .7

|Please select

or people
aréntly.

\ 0 3
Kitchen

HeU a The fl l’St 1 Jme , uUtility room

.I00FINg
o= v e - bmartsteps
Think combinations...

| Combine
SmartSteps
Combine our new solid
floor ties with Meuga
carpet tiles

Get inspired...
Se amazed by our latest images of Heuga modular flooring

LPSIL IDSE - Guilhem Molines

37

Performance testing

» Purpose: test system performance, both
globally (from a user transaction prospective)
and locally (each function, each resource)

» Why?

- User responsiveness (hence, acceptance)
- Hardware costs

- Detect resource contention issue that may only
reveal in production

LPSIL IDSE - Guilhem Molines

38

Performance testing

How to perform this type test?
» Globally

- Perform test scenarios and stopwatch them

- Manually (user testing and reporting times + subjective
feedback)

- Automated: frameworks such as HttpUnit, WebStressTool,
etc.

- Take into account system operative mode, E.g.:
transactional, nightly batches

- Measure against hardware dimensions and expected /
worst case load

LPSIL IDSE - Guilhem Molines

39

Performance testing

How to perform this type test?

» Locally

> Instrument code at method level, using profilers
(YourKit, Optimizelt, JProbe, Jfluid, etc.)

> Log: traces should be time stamped.

- At resource level, E.qg.: filter queries to DB, measure
throughput against cpu usage, etc.

LPSIL IDSE - Guilhem Molines

40

Scalability vs Load Testing

» Exercise: what is the difference?

41

Scalability testing

» Purpose: test system performance
degradation under load increase

» Why?
- |deally, the system performance should be linear
with load

- Hardware costs forecast: if usage double, will
hardware costs double as well, or more ?

- Detect algorithmic issues, poorly coded functions

LPSIL IDSE - Guilhem Molines

42

Scalability testing

How to perform this type test?

» Stress—-load the system
> Test scenarios with simulated heavy loads

- Make sure the test clients are not the bottlenecks
themselves: sufficient hardware, dimension stress test
environment

» Plot performance vs. load and establish trend:
linear, exponential ?

» Identify resource contention. For example, an
app-server cluster with a single, slow database

LPSIL IDSE - Guilhem Molines

43

Reliability vs Recovery

» Exercise: what is the difference?

44

Coverage testing

» What type of coverage ?
> Lines of code
> Platforms
> Features

LPSIL IDSE - Guilhem Molines

45

Translatability testing

» Purpose: ensure the system can be translated
to other languages

» Why?

- To detect hard-coded pieces of text

- To check for icons/images with local meaning

LPSIL IDSE - Guilhem Molines

46

Translatability testing

» How:

- Using a pseudo-locale

- Mostly manual process

LPSIL IDSE - Guilhem Molines

47

Globalization testing

» Purpose: ensure the system can be operated
once translated to another language

» Why?

- To detect if translations mean something usable

- To verify that translation didn’t cause any
regression

LPSIL IDSE - Guilhem Molines

48

Globalization testing

» How:

> Functional scenarios, manual

- Requires native speakers

LPSIL IDSE - Guilhem Molines

49

Accessibility testing

» Purpose: ensure the system can be operated
by people with disabilities

» What?
> Color-blind -> high contrast display

- No-mouse operation

- Zoomable fonts

LPSIL IDSE - Guilhem Molines

50

Documentation testing

» Purpose: ensure the system is documented, in all
supported languages

» What?

- Documentation can be displayed
> Doc is complete, in the right languages

> Doc snapshots match real software

LPSIL IDSE - Guilhem Molines

51

Code Inspections

» Recurrent Peer reviews

» Look at other developer code and spot:
awkward code

unnecessarily complex code

potential errors

sub-optimal algorithms

(0]

o]

(0]

o]

LPSIL IDSE - Guilhem Molines

52

Security testing

» Purpose: test system security, as well as the

(in)ability of the system to give access to
other systems

» Why?
- Weakest link of the chain
- Hardware costs

- Detect resource contention issue that may only
reveal in production

LPSIL IDSE - Guilhem Molines

53

Security testing

» Why ? video

54

Agenda

» Test Types
» Tooling and Strategy

55

Testing: When ?

» After development is done?
» During the development?
» Or even before?

» And/or

» Once product is released
- Beta version
- Regression testing on fixpacks
- Customer scenarios

» Cost: 1x, 10x, 100x, 1000x, 10000x

LPSIL IDSE - Guilhem Molines

56

Testing: When - During dev

Unit-tests
o At module level

v

v

Integration tests
> Works best with continuous integration

v

Regression tests
- All along

System tests
> Dedicated phase

v

v

Acceptance tests
- Before delivery

LPSIL IDSE - Guilhem Molines

57

Testing: When - Once released

» Beta program needs be managed

» Customer cases

- Show product usage
- Exhibit scenarios we may not have used for testing

LPSIL IDSE - Guilhem Molines

58

Testing: What ?
» New features

» Things customer are going to see first
> Installers
> Tutorials
- documentation

» Things that have high impact if they break

» Code commits impact analysis

LPSIL IDSE - Guilhem Molines

59

Testing: Who ?

v

v

Testers

But also

Developers

DOC writers
Product managers
Customers...

LPSIL IDSE - Guilhem Molines

60

Testing: How?

» Tooling
> Unit-test: jUnit, Nunit, HttpUnit, Mock Objects, ...
> Integration: jUnit report
- Ul Robots: QFTest, Selenium
- Coverage: Clover
> Test plan manamgent: RQM, Mercury

» Frequency

> Unit-tests: daily if not hourly

> Integration tests: ideally daily

- System, usability, etc: at least once per iteration
> The more the merrier

LPSIL IDSE - Guilhem Molines

61

Testing: How?

» Coverage
> Line coverage
> Platforms
- OS, DB, browser, JVM version, etc.
- Data ranges
- Test case generation

» Combinatorial madness

- Need smart choices
- Need to document what was tested

LPSIL IDSE - Guilhem Molines

62

LPSIL IDSE - Guilhem Molines

63

Next session

» Configuration Management (Oct 24th)

LPSIL IDSE - Guilhem Molines

64

