
Cours LPSIL

2014

 Test Types

 Tooling and Strategy

2LPSIL IDSE - Guilhem Molines

 This slide is not at the end

 Ask questions when they come up. If it’s out
of place, we’ll list it on a dedicated
whiteboard page

3LPSIL IDSE - Guilhem Molines

 What is it?

4LPSIL IDSE - Guilhem Molines

 What is it?

 No defect ?

5LPSIL IDSE - Guilhem Molines

 What is it?

 No defect?

 or….

 Known defects?

6LPSIL IDSE - Guilhem Molines

 In theory, we’d like software with zero bug

 However, bug-free software is hardly
achievable, given:

◦ Time and financial constraints

◦ Human limit vs. System size

◦ Pressure of the competition

7LPSIL IDSE - Guilhem Molines

 Quality’s purposes are to:
◦ Know and document bugs

◦ Verify them for regression

◦ Find workarounds

◦ Feed more requirements (bugs show product
usage)

8LPSIL IDSE - Guilhem Molines

 Measurements, indicators, monitoring
◦ -> Dec. 12th

 Defect management
◦ -> Nov. 21th

 Testing
◦ -> Today

9LPSIL IDSE - Guilhem Molines

 Several methodologies widely used:
◦ Waterfall
◦ Iterative
◦ a combination of both (short iterative V-cycles)
◦ eXtreme Programming, etc.

 Each allocates a large amount of time to
testing phases

 Pareto law: 80% of the code written to handle
error cases.

LPSIL IDSE - Guilhem Molines 10

 Exercise

11LPSIL IDSE - Guilhem Molines

 Unit Tests
 Integration Tests
 GUI Tests
 Non-regression Tests
 Coverage Tests
 Load Tests
 Stress Tests
 Performance Tests
 Scalability Tests
 Reliability Tests
 Volume Tests

12LPSIL IDSE - Guilhem Molines

 Volume Tests
 Usability Tests
 Security Tests
 Recovery Tests
 L10N/I18N Tests
 Accessibility Tests
 Installation/Configuration

Tests
 Documentation Tests
 Platform testing
 Samples/Tutorials Testing
 Code inspections
 …

 Purpose: test a single class, or even a single
method

 Why?
◦ Contract compliance

◦ Regression

◦ Bug isolation

◦ Documentation (test code is a usage sample)

13LPSIL IDSE - Guilhem Molines

 How to perform this type test?
◦ Invoke each method of the class

◦ With various, representative sets of data

◦ Capture the returned values

◦ Check against expected results

◦ Record success / failure

14LPSIL IDSE - Guilhem Molines

 How to automate?
◦ Write a java method for each tested method

◦ Have it perform with various data sets

◦ Dump results in some file (E.g.: xml)

◦ Report from result file

 the most interesting part is the body of the
test method. The rest would be best provided
by a framework

15LPSIL IDSE - Guilhem Molines

 Environment Example: jUnit
 Provides:
◦ Test base class, with assertion utilities

 assertTrue, assertNotNull, assertEquals, etc.

◦ Mechanism for setting up each test, and cleaning
after it => tests executes in the same, known
context

◦ Test suite assembling
◦ Reporting, with xml and html report generation
◦ ant integration
◦ GUI
◦ Integration in most IDEs (E.g.: Eclipse, IntelliJ, …)

16LPSIL IDSE - Guilhem Molines

public class IlrCVSTestBase extends TestCase {
public IlrCVSTestBase(String testName) {
super(testName);
. . .
}

…}
public class IlrRepositoryRelationTestBase extends IlrCVSTestBase {

private File moduleDirectoryUser1;
private File moduleDirectoryUser2;
private IlrRepository repository1 = new IlrBrmRepository();
private IlrRepository repository2 = new IlrBrmRepository();

public IlrRepositoryRelationTestBase(String testName, String aPropertyFileName) {
super(testName, aPropertyFileName);

assertTrue(getCVSClient().isConnectionPossible(getCVSRoot(0), getPassword(0)));

assertTrue(getCVSClient().isConnectionPossible(getCVSRoot(1), getPassword(1)));

getMediator(0).setCVSPassword(getPassword(0));

getMediator(1).setCVSPassword(getPassword(1));

}

17LPSIL IDSE - Guilhem Molines

protected void setUp() throws Exception {
super.setUp();
moduleDirectoryUser1 = IlrCVSUtil.addFolder(null, getLocalDestinationPath(0));
assertNotNull("moduleDirectory for user 1 is null", getModuleDirectoryUser1());
moduleDirectoryUser2 = IlrCVSUtil.addFolder(null, getLocalDestinationPath(1));
assertNotNull("moduleDirectory for user 2 is null", getModuleDirectoryUser2());
moduleDirectoryUser1 = checkoutRepository(repository1, getMediator(0));
assertNotNull("Couldn't check-out repository for user 1", getModuleDirectoryUser1());
moduleDirectoryUser2 = checkoutRepository(repository2, getMediator(1));
assertNotNull("Couldn't check-out repository for user 2", getModuleDirectoryUser2());

}
protected void tearDown() throws Exception {

getRepository1().getPersistenceManager().close();
getRepository2().getPersistenceManager().close();
assertTrue(IlrCVSUtil.deleteFile(getModuleDirectoryUser1()));
assertTrue(IlrCVSUtil.deleteFile(getModuleDirectoryUser2()));
super.tearDown();

}

18LPSIL IDSE - Guilhem Molines

protected IlrDynamicObjectModel findBom(IlrRepository aRepository) {
IlrRefPackage refPack = aRepository.getExtent("Application");
assertNotNull(refPack);
IlrLibrary lib = (IlrLibrary) refPack.findModelElement("Template Library");
assertNotNull(lib);
IlrDynamicObjectModel bom = (IlrDynamicObjectModel)lib.getBOM();
assertNotNull(bom);
return bom;

}

protected void changeRelationsABIntoACAndForScenario1(IlrElement elem1A,
IlrElement elem1B, IlrElement elem1C) throws IlrRepException {
IlrStructuralFeature typeSF = elem1A.getStructuralFeature(IlrConstants.TYPE_REFERENCE);
assertNotNull("Can't find type Structural Feature", typeSF);
Object oldValue = elem1A.getValue(typeSF);
assertTrue("old value should be elem B", oldValue == elem1B);
elem1A.setValue(typeSF,elem1C);
Object newValue = elem1A.getValue(typeSF);

assertTrue("new value should be elem C", newValue == elem1C);
}

19LPSIL IDSE - Guilhem Molines

public static TestSuite suite() {
TestSuite suite = new TestSuite("IlrUpdateTestCase");
suite.addTest(new IlrUpdateTestCase("testUpdateOnModifiedFile"));
suite.addTest(new

IlrUpdateTestCase("testUpdateOnUnmodifiedFolder"));
suite.addTest(new IlrUpdateTestCase("testUpdateOnDeletedFolder"));
suite.addTest(new

IlrUpdateTestCase("testUpdateCleanOnDeletedFolder"));
suite.addTest(new

IlrUpdateTestCase("testUpdateFileWithMissingRevision"));
suite.addTest(new IlrUpdateTestCase("testUpdateFileWithRevision"));
suite.addTest(new

IlrUpdateTestCase("testUpdateCleanFolderOnModifiedFolder"));
suite.addTest(new IlrUpdateTestCase("testUpdateOnConflictFile"));
suite.addTest(new IlrUpdateTestCase("testUpdateReadOnlyFile"));
return suite;

}

20LPSIL IDSE - Guilhem Molines

 Example:
public class FooTest

void setUp();
void tearDown();
void testFunctionA();
void testFunctionB();

 Lifecycle: what the test runner does:
FooTest f = new FooTest();
f.setUp();
f.testFunctionA();
f.tearDown();
f.setUp();
f.testFunctionB();
f.tearDown();

21LPSIL IDSE - Guilhem Molines

ant integration:
<target name="run.junit">

<property name="junit.includes" value="**/*Tests.class" />
<junit printsummary="yes" fork="yes" maxmemory="512m"

haltonfailure="no">
<classpath>

<pathelement location="${classes}"/>

<pathelement location="${scripts.dir}/lib/junit.jar"/>

<pathelement location="${scripts.dir}/lib/dom4j-1.4-dev-8.jar"/>

<pathelement location="${scripts.dir}/lib/ant-testutil.jar"/>

<pathelement location="${integration.dir}/lib/dom.jar"/>

<pathelement location="${integration.dir}/lib/j2ee-1.3.1.jar"/>

</classpath>

<jvmarg value="-Dproperties.file=${basedir}/properties.file"/>

<batchtest todir="${tests.reports.dir}">

<fileset dir="${classes}" includes="${junit.includes}“ excludes="${junit.excludes}" />

</batchtest>

<formatter type="xml"/>

</junit>
</target>

22LPSIL IDSE - Guilhem Molines

Reporting:

<target name="report" >

<junitreport todir="${tests.reports.dir}">

<fileset dir="${tests.reports.dir}“
includes="TEST-*.xml" />

<report todir="${tests.reports.dir}" />

</junitreport>

</target>

23LPSIL IDSE - Guilhem Molines

24LPSIL IDSE - Guilhem Molines

 Purpose: test the system (or part thereof)
after integration of several components

 Why?
◦ Although each component may work well

separately, they may not operate correctly together,
due to (among other reasons):

 Communication issues

 Synchronization issues

 Different data ranges / data types

 Misunderstanding of contracts

 Bugs introduced during integration

25LPSIL IDSE - Guilhem Molines

 How to perform this type test?
◦ Same as unit-tests, but:

 on (a subset of) the whole system (that is, theresult of
a (partial) integration)

 Perform scenarios closer to real-life situation

◦ Issue is often the GUI, so to work around this:

 Several people stuck in a room typing all day long
following written scenarios

 Bypass the GUI by plugging the test tool at the layer
just below it. GUI will then have to be tested separately

26LPSIL IDSE - Guilhem Molines

 White / black box ?
◦ Black box:

 Define input and expected output.

 Input data into system

 Compare actual output with expected result

 This can be done without actual knowledge of how the
system is built => easy to outsource or delegate to
others

27LPSIL IDSE - Guilhem Molines

 White / black box ?
◦ White box:

 Same, but also look at the internal state of the system
along the data path

 Usually, can only be performed by the writers of the
system:

 Biased tests (they know the happy path)

 Utilize resources that may be needed elsewhere => tests
not done thoroughly

 Often needed to understand complex scenario
(E.g.:debugging)

28LPSIL IDSE - Guilhem Molines

 Tools:
◦ Tests performed by tester teams:

 Full duplicate of production environment: same
database, app servers, etc.

 Tools to quickly restore system in a “clean” state, E.g.:
DB scripts, image drive, etc.

 Internal Bug Tracking: BugZilla, ad hoc database

 Reporting: spreadsheet, reporting component of
dedicated bug tracking tool.

29LPSIL IDSE - Guilhem Molines

 Tools:
◦ Tests performed by dev teams:

 Ideally, in test environment as close as possible to
production environment. Often, performed in dev
environment, especially when testing partial
integration.

 Same type of tools as for unit-testing. Often beefed-
up with scenarios.

 For example, with jUnit, one can build scenarios with
test suites, each step being a unit-test.

 Similar tracking and reporting needs and tools

30LPSIL IDSE - Guilhem Molines

 Tools:
◦ When GUI is involved

 “Learning robots”: record UI interaction in a
(proprietary) scripting language, then replay and
compare results with expected, at UI level

◦ Often, ability to write directly in the dedicated
scripting language.

◦ Not very robust to change, often require manual
intervention

31LPSIL IDSE - Guilhem Molines

 Purpose: detect regressions introduced
between two releases of the system

 Why?
◦ Regression DO happen

◦ Side-effects

◦ Specification changes

◦ Bug correction leads to introduction of other bugs

32LPSIL IDSE - Guilhem Molines

 What tests can be used for regression testing:
◦ Unit-tests, integration tests, pretty much anything

that can easily be automated

◦ The more the better

 How to perform this type test?
◦ Run suites of tests against two releases of the

software, with the same data set

◦ Compare tests results

◦ Log regression in bug tracking system

 Shows how important CM is

33LPSIL IDSE - Guilhem Molines

 Purpose: Find out is the system is really
usable by its intended audience

 Why?
◦ System is built by developers … but used by

Business Users

◦ Even minimal UI changes can confuse business
users with years of experience of “doing it this way”

◦ System has to face real-life usage

34LPSIL IDSE - Guilhem Molines

 How: Almost impossible to automate

 Tips:
◦ Involve ergonomic specialists early in the project

◦ Use reusable, standardized UI components

◦ Take performance into account: a slow responding
system won’t be accepted easily

◦ Have Business Users test early on UI mockups

35LPSIL IDSE - Guilhem Molines

 How: Almost impossible to automate

 Tips:
◦ Involve ergonomic specialists early in the project

◦ Use reusable, standardized UI components

◦ Take performance into account: a slow responding
system won’t be accepted easily

◦ Have Business Users test early on UI mockups

36LPSIL IDSE - Guilhem Molines

 Tools: Eye tracking

37LPSIL IDSE - Guilhem Molines

 Purpose: test system performance, both
globally (from a user transaction prospective)
and locally (each function, each resource)

 Why?
◦ User responsiveness (hence, acceptance)

◦ Hardware costs

◦ Detect resource contention issue that may only
reveal in production

38LPSIL IDSE - Guilhem Molines

How to perform this type test?

 Globally
◦ Perform test scenarios and stopwatch them

 Manually (user testing and reporting times + subjective
feedback)

 Automated: frameworks such as HttpUnit, WebStressTool,
etc.

◦ Take into account system operative mode, E.g.:
transactional, nightly batches

◦ Measure against hardware dimensions and expected /
worst case load

39LPSIL IDSE - Guilhem Molines

How to perform this type test?

 Locally
◦ Instrument code at method level, using profilers

(YourKit, OptimizeIt, JProbe, Jfluid, etc.)

◦ Log: traces should be time stamped.

◦ At resource level, E.g.: filter queries to DB, measure
throughput against cpu usage, etc.

40LPSIL IDSE - Guilhem Molines

 Exercise: what is the difference?

41LPSIL IDSE - Guilhem Molines

 Purpose: test system performance
degradation under load increase

 Why?
◦ Ideally, the system performance should be linear

with load

◦ Hardware costs forecast: if usage double, will
hardware costs double as well, or more ?

◦ Detect algorithmic issues, poorly coded functions

42LPSIL IDSE - Guilhem Molines

How to perform this type test?

 Stress-load the system
◦ Test scenarios with simulated heavy loads
◦ Make sure the test clients are not the bottlenecks

themselves: sufficient hardware, dimension stress test
environment

 Plot performance vs. load and establish trend:
linear, exponential ?

 Identify resource contention. For example, an
app-server cluster with a single, slow database

43LPSIL IDSE - Guilhem Molines

 Exercise: what is the difference?

44LPSIL IDSE - Guilhem Molines

 What type of coverage ?
◦ Lines of code

◦ Platforms

◦ Features

45LPSIL IDSE - Guilhem Molines

 Purpose: ensure the system can be translated
to other languages

 Why?
◦ To detect hard-coded pieces of text

◦ To check for icons/images with local meaning

46LPSIL IDSE - Guilhem Molines

 How:

◦ Using a pseudo-locale

◦ Mostly manual process

47LPSIL IDSE - Guilhem Molines

 Purpose: ensure the system can be operated
once translated to another language

 Why?
◦ To detect if translations mean something usable

◦ To verify that translation didn’t cause any
regression

48LPSIL IDSE - Guilhem Molines

 How:

◦ Functional scenarios, manual

◦ Requires native speakers

49LPSIL IDSE - Guilhem Molines

 Purpose: ensure the system can be operated
by people with disabilities

 What?
◦ Color-blind -> high contrast display

◦ No-mouse operation

◦ Zoomable fonts

50LPSIL IDSE - Guilhem Molines

 Purpose: ensure the system is documented, in all
supported languages

 What?
◦ Documentation can be displayed

◦ Doc is complete, in the right languages

◦ Doc snapshots match real software

◦ …

51LPSIL IDSE - Guilhem Molines

 Recurrent Peer reviews

 Look at other developer code and spot:
◦ awkward code

◦ unnecessarily complex code

◦ potential errors

◦ sub-optimal algorithms

52LPSIL IDSE - Guilhem Molines

 Purpose: test system security, as well as the
(in)ability of the system to give access to
other systems

 Why?
◦ Weakest link of the chain

◦ Hardware costs

◦ Detect resource contention issue that may only
reveal in production

53LPSIL IDSE - Guilhem Molines

 Why ? video

54LPSIL IDSE - Guilhem Molines

 Test Types

 Tooling and Strategy

55LPSIL IDSE - Guilhem Molines

 After development is done?

 During the development?

 Or even before?

 And/or

 Once product is released
◦ Beta version
◦ Regression testing on fixpacks
◦ Customer scenarios

 Cost: 1x, 10x, 100x, 1000x, 10000x

56LPSIL IDSE - Guilhem Molines

 Unit-tests
◦ At module level

 Integration tests
◦ Works best with continuous integration

 Regression tests
◦ All along

 System tests
◦ Dedicated phase

 Acceptance tests
◦ Before delivery

57LPSIL IDSE - Guilhem Molines

 Beta program needs be managed

 Customer cases
◦ Show product usage

◦ Exhibit scenarios we may not have used for testing

58LPSIL IDSE - Guilhem Molines

 New features

 Things customer are going to see first
◦ Installers

◦ Tutorials

◦ documentation

 Things that have high impact if they break

 Code commits impact analysis

59LPSIL IDSE - Guilhem Molines

 Testers

 But also

 Developers

 Doc writers

 Product managers

 Customers…

60LPSIL IDSE - Guilhem Molines

 Tooling
◦ Unit-test: jUnit, Nunit, HttpUnit, Mock Objects, …
◦ Integration: jUnit report
◦ UI Robots: QFTest, Selenium
◦ Coverage: Clover
◦ Test plan manamgent: RQM, Mercury

 Frequency
◦ Unit-tests: daily if not hourly
◦ Integration tests: ideally daily
◦ System, usability, etc: at least once per iteration
◦ The more the merrier

61LPSIL IDSE - Guilhem Molines

 Coverage
◦ Line coverage

◦ Platforms

 OS, DB, browser, JVM version, etc.

◦ Data ranges

 Test case generation

 Combinatorial madness
◦ Need smart choices

◦ Need to document what was tested

62LPSIL IDSE - Guilhem Molines

63LPSIL IDSE - Guilhem Molines

 Configuration Management (Oct 24th)

64LPSIL IDSE - Guilhem Molines

