
29/11/2016

Cécile Camillieri

1

SOLID Principles
Based on Mireille Blay & Simon Urli courses

● Single Responsibility Principle (SRP): a class has only one

responsibility (or concern)

● Open/Closed Principle (OCP): a class should be open for extension (by

inheritance for example) but closed for modification (ex: private attributes)

● Liskov Substitution Principle (LSP): objects of a program can be

replaced by their subtypes without “breaking” the system.

● Interface Segregation Principle (ISP): several specific interfaces are

better than a single generic interface.

● Dependency Inversion Principle (DIP): you must depend on

abstractions, not concrete implementations.

S.O.L.I.D

29/11/16 - CC - camillie@i3s.unice.fr 2

● Single Responsibility Principle (SRP): a class has only one

responsibility (or concern)

● Open/Closed Principle (OCP): a class should be open for extension (by

inheritance for example) but closed for modification (ex: private attributes)

● Liskov Substitution Principle (LSP): objects of a program can be

replaced by their subtypes without “breaking” the system.

● Interface Segregation Principle (ISP): several specific interfaces are

better than a single generic interface.

● Dependency Inversion Principle (DIP): you must depend on

abstractions, not concrete implementations.

S.O.L.I.D

29/11/16 - CC - camillie@i3s.unice.fr 3

● We often need to sort students by name or SSN.
● So one may implement the Java Comparable Interface

class Student implements Comparable {
int compareTo(Object o) { … }

};

Single Responsibility Principle

29/11/16 - CC - camillie@i3s.unice.fr 4

Student

SSN
name
major

getSSN()
getName()

int compareTo()

Comparable

int compareTo()

www.cs.uofs.edu/~bi/2013f-html/se510/design-principles.ppt

Single Responsibility Principle

29/11/16 - CC - camillie@i3s.unice.fr 5

Student

SSN
name
major

getSSN()
getName()

int compareTo()

Comparable

int compareTo()

www.cs.uofs.edu/~bi/2013f-html/se510/design-principles.ppt

AClient

operation()

Register

add(Course c,
Student s)

Invokes: Collections.sort(listOfStudents)

?

● We often need to sort students by name or SSN.
● So one may implement the Java Comparable Interface

class Student implements Comparable {
int compareTo(Object o) { … }

};

BUT:

● Student is a business entity, it does not know in what order it should be
sorted since the order of sorting is imposed by the client of Student.

● Worse: every time students need to be ordered differently, we have to
recompile Student and all its client.

● Cause of the problems: we bundled two separate responsibilities (i.e.,
student as a business entity with ordering) into one class – a violation of SRP

Single Responsibility Principle

29/11/16 - CC - camillie@i3s.unice.fr 6

www.cs.uofs.edu/~bi/2013f-html/se510/design-principles.ppt

Single Responsibility Principle

29/11/16 - CC - camillie@i3s.unice.fr 7

Student
SSN

name
major

getSSN()
getName()

Comparator
int compare(Object o1, Object o2)

www.cs.uofs.edu/~bi/2013f-html/se510/design-principles.ppt

ClientA
operation()

Register
add(Course c, Student s)

Invokes: Collections.sort(list, new SudentByName())

StudentByName
int compare(Object o1, Object o2)

Solution: separate the two responsibilities in two
classes and use a different version of Collections.sort().

Single Responsibility Principle

29/11/16 - CC - camillie@i3s.unice.fr 8

Student
SSN

name
major

getSSN()
getName()

Comparator
int compare(Object o1, Object o2)

www.cs.uofs.edu/~bi/2013f-html/se510/design-principles.ppt

ClientA
operation()

Register
add(Course c, Student s)

StudentByName
int compare(Object o1, Object o2)

StudentBySSN
int compare(Object o1, Object o2)

ClientB
operation()

Solution: separate the two responsibilities in two
classes and use a different version of Collections.sort().

● Single Responsibility Principle (SRP): a class has only one

responsibility (or concern)

● Open/Closed Principle (OCP): a class should be open for extension (by

inheritance for example) but closed for modification (ex: private attributes)

● Liskov Substitution Principle (LSP): objects of a program can be

replaced by their subtypes without “breaking” the system.

● Interface Segregation Principle (ISP): several specific interfaces are

better than a single generic interface.

● Dependency Inversion Principle (DIP): you must depend on

abstractions, not concrete implementations.

S.O.L.I.D

29/11/16 - CC - camillie@i3s.unice.fr 9

Open/Closed Principle

29/11/16 - CC - camillie@i3s.unice.fr 10

● Software entities must be open to extension
=> Code is extensible

● But closed to modifications
=> Code has been written, tested, we won’t touch it anymore

You should be able to extend a class
behavior, without modifying it.

- Robert C. Martin

Open the door...

29/11/16 - CC - camillie@i3s.unice.fr 11

● How do we make the car faster?

Car Piston
Engine

With the current conception, we have to change the car...

… But keep it closed!

29/11/16 - CC - camillie@i3s.unice.fr 12

● Remember:

Car Abstract
Engine

● A class must not depend on another concrete class.
=> Depend on an abstract class…

and use polymorphism.

Piston
Engine

● Single Responsibility Principle (SRP): a class has only one

responsibility (or concern)

● Open/Closed Principle (OCP): a class should be open for extension (by

inheritance for example) but closed for modification (ex: private attributes)

● Liskov Substitution Principle (LSP): objects of a program can be

replaced by their subtypes without “breaking” the system.

● Interface Segregation Principle (ISP): several specific interfaces are

better than a single generic interface.

● Dependency Inversion Principle (DIP): you must depend on

abstractions, not concrete implementations.

S.O.L.I.D

29/11/16 - CC - camillie@i3s.unice.fr 13

Liskov Substitution Principle

29/11/16 - CC - camillie@i3s.unice.fr 14

● Instances of a class should be replaceable by instances of
their subclasses without breaking the program.

● If a property P is true for an instance of type T, P must
stay true for any instance y of a subtype of T.

● The contract of a class must be respected by its subclasses
● The caller does not need to know the exact class it is using: any

derived class can be substituted to the one used.

Liskov Substitution Principle

29/11/16 - CC - camillie@i3s.unice.fr 15

● Instances of a class should be replaceable by instances of
their subclasses without breaking the program.

● If a property P is true for an instance of type T, P must
stay true for any instance y of a subtype of T.

● This is a basic property of polymorphism:
○ If we substitute a class by another derived class from

the same hierarchy, behavior is (of course) different, but
follows the same rules.

Inheritance appears simple

29/11/16 - CC - camillie@i3s.unice.fr 16

class Bird { // has beak, wings,...
public: virtual void fly(); // Bird can fly

};

class Parrot : public Bird { // Parrot is a bird
public: virtual void mimic(); // Can Repeat words...

};

// ...
Parrot mypet;
mypet.mimic(); // my pet being a parrot can Mimic()
mypet.fly(); // my pet “is-a” bird, can fly

But penguins fail to fly !

29/11/16 - CC - camillie@i3s.unice.fr 17

class Penguin : public Bird {
public: void fly() {

error (“Penguins don’t fly!”); }
};

● This does not model “Penguins can’t fly”
● It models: “Penguind may fly, but if they try it is an error”
● Run-time error if attempt to fly -> not desirable

Think about sustainabilty - The contract is broken
void PlayWithBird (Bird& abird) {

abird.fly(); // OK if Parrot.
// if bird happens to be Penguin… OOOPS!!

}

class LspTest {
private static Rectangle getNewRectangle(){

// it can be an object returned by some factory ...
return new Square();

}

public static void main (String args[]){
Rectangle r = LspTest.getNewRectangle();
r.setWidth(5);
r.setHeight(10);

}}

LSP: Another counter-example

29/11/16 - CC - camillie@i3s.unice.fr 18

● User knows the object is a rectangle
● She assumes that the area will be 5x10 = 50
● But it is 100 !

Rectangle
int width
int height
getWidth()
setWidth()
getHeight()
setHeight()

Square

Liskov Substitution Principle

29/11/16 - CC - camillie@i3s.unice.fr 19

● Solution: Square should not be a subclass of Rectangle
but a completely independant class.

This does not change the fact that a square is a rectangle !
● Square represents the concept of a square
● Rectangle represents the concept of a rectangle
● But a representation does not share the same

properties of what it represents!

=> Good code does not mean following exactly real life.

Rectangle
int width
int height
getWidth()
setWidth()
getHeight()
setHeight()

Square

● Single Responsibility Principle (SRP): a class has only one

responsibility (or concern)

● Open/Closed Principle (OCP): a class should be open for extension (by

inheritance for example) but closed for modification (ex: private attributes)

● Liskov Substitution Principle (LSP): objects of a program can be

replaced by their subtypes without “breaking” the system.

● Interface Segregation Principle (ISP): several specific interfaces are

better than a single generic interface.

● Dependency Inversion Principle (DIP): you must depend on

abstractions, not concrete implementations.

S.O.L.I.D

29/11/16 - CC - camillie@i3s.unice.fr 20

Interface Segregation Principle

29/11/16 - CC - camillie@i3s.unice.fr 21

● An interface is the set of methods one object knows it can invoke on
another object.

● A class can implement many interfaces (an interface is a subset of all the
methods a class implements).

● A type is a specific interface of an object.
● Different objects can have the same type and the same object can have

many different types.
● An object is known by other objects only through its interface.
● Interfaces are the key to pluggability.

Make fine grained interfaces
that are client specific.

- Robert C. Martin

Interface example

29/11/16 - CC - camillie@i3s.unice.fr 22

/**
* Interface IManeuverable provides the specification
* for a maneuverable vehicle.
*/
public interface IManeuverable {

public void left();
public void right();
public void forward();
public void reverse();
public void climb();
public void dive();
public void setSpeed(double speed);
public double getSpeed();

}

public class Car implements IManeuverable {// Code here.}
public class Boat implements IManeuverable {// Code here.}

Interface example

29/11/16 - CC - camillie@i3s.unice.fr 23

● We can maneuver the vehicle without being concerned
about the actual class (car, boat, submarine) or its
inheritance hierarchy.

public void travel(IManeuverable vehicle) {
vehicle.setSpeed(35.0);
vehicle.forward();
vehicle.left();
vehicle.climb();

}

ISP example: Timed door

29/11/16 - CC - camillie@i3s.unice.fr 24

class Door {
public:
virtual void Lock() = 0;
virtual void Unlock() = 0;
virtual bool IsDoorOpen() = 0;

};

● A TimedDoor needs to sound an alarm when the door has
been left open for too long. To do this, it communicates
with a Timer object.

CSE 403, Spring 2008, Alverson

ISP example: Timed door

29/11/16 - CC - camillie@i3s.unice.fr 25

class Timer {
public:
void Register(int timeout, TimerClient* client);

};

class TimerClient {
public:
virtual void TimeOut() = 0;

};

● How should we connect the TimerClient to a new
TimedDoor class so it can be notified on a timeout?

duration before timeout

timeout method

object to invoke TimeOut() on
when a timeout occurs

CSE 403, Spring 2008, Alverson

Timed Door Solution: Yes or No?

29/11/16 - CC - camillie@i3s.unice.fr 26

TimerClient

Door

TimedDoor

No, it is polluting the Door interface by requiring all doors to
have a TimeOut() method.

CSE 403, Spring 2008, Alverson

Timed Door Solution: Yes or No?

29/11/16 - CC - camillie@i3s.unice.fr 27

TimerClient Door

TimedDoor

Yes, separation through multiple inheritance

CSE 403, Spring 2008, Alverson

Timed Door Solution: Yes or No?

29/11/16 - CC - camillie@i3s.unice.fr 28

TimerClient Door

TimedDoor

Yes, separation through multiple inheritance

TimedDoorAdapter1 *

CSE 403, Spring 2008, Alverson

● Single Responsibility Principle (SRP): a class has only one

responsibility (or concern)

● Open/Closed Principle (OCP): a class should be open for extension (by

inheritance for example) but closed for modification (ex: private attributes)

● Liskov Substitution Principle (LSP): objects of a program can be

replaced by their subtypes without “breaking” the system.

● Interface Segregation Principle (ISP): several specific interfaces are

better than a single generic interface.

● Dependency Inversion Principle (DIP): you must depend on

abstractions, not concrete implementations.

S.O.L.I.D

29/11/16 - CC - camillie@i3s.unice.fr 29

Dependency Inversion Principle

29/11/16 - CC - camillie@i3s.unice.fr 30

● Reduce dependencies on concrete classes
● “ Program to interface, not implementation”
● Abstractions must not depend on details.

○ Details should depend on abstractions.

● ONLY depend on abstractions, even for low level classes.
● Allows the Open/Closed Principle when DIP is the

technique

Depend on abstractions, not on concretions.

- Robert C. Martin

Dependency Inversion

29/11/16 - CC - camillie@i3s.unice.fr 31

A B

A I

B

dependency

dependency

29/11/16 - CC - camillie@i3s.unice.fr 32

Problems with strong coupling

29/11/16 - CC - camillie@i3s.unice.fr 33

Musician Saxophone

● Hard to test the Musician class
● Hard to reuse the Musician class

Loosen the coupling !

29/11/16 - CC - camillie@i3s.unice.fr 34

● Remember:

Musician Instrument

● Mask the implementation with an interface
● This creates a loose coupling between the

calling object and the called object. They do
not need to know each other.

Saxophone

29/11/16 - CC - camillie@i3s.unice.fr 35

Sum up

● Single Responsibility Principle (SRP): a class has only one

responsibility (or concern)

● Open/Closed Principle (OCP): a class should be open for extension (by

inheritance for example) but closed for modification (ex: private attributes)

● Liskov Substitution Principle (LSP): objects of a program can be

replaced by their subtypes without “breaking” the system.

● Interface Segregation Principle (ISP): several specific interfaces are

better than a single generic interface.

● Dependency Inversion Principle (DIP): you must depend on

abstractions, not concrete implementations.

S.O.L.I.D

29/11/16 - CC - camillie@i3s.unice.fr 37

?
29/11/16 - CC - camillie@i3s.unice.fr 38

