
05/12/2016

Cécile Camillieri

1

Introduction to Services
Focus on REST* services

Based on Simon Urli’s course

System?

 “ A set of interacting or interdependent
components forming a complex whole ”

Alexander Backlund

System?

System

 “ A set of interacting or interdependent
components forming a complex whole ”

05/12/16 - CC - camillie@i3s.unice.fr 4

Software System

 “ A set of interacting or interdependent
components forming a complex whole ”

05/12/16 - CC - camillie@i3s.unice.fr 5

Software System

 “ A set of interacting or interdependent
components forming a complex whole ”

05/12/16 - CC - camillie@i3s.unice.fr 6

What we want to avoid...

What we’d rather have

But how?

Towards services

→ Objects

→ Components

→ Services

05/12/16 - CC - camillie@i3s.unice.fr 10

⇒ Assembly at a very low level

Objects

● Encapsulate methods and attributes
in a single software unit.

● Needs to be compiled or interpreted

● Made to interact with other Objects

05/12/16 - CC - camillie@i3s.unice.fr 11

⇒ Assembly at a high level

Components

● There is not one component definition
→ library, packet, plugin, etc.

● A component is a black box
that is used directly from its interfaces

● It is a part of the software.

05/12/16 - CC - camillie@i3s.unice.fr 12

Services

● A service is a component that is external to the system.

● Focuses on a specific functionality.

● A black box that is used directly from interfaces.

● Need to specify how data is serialized.

⇒ Assembly at a high and distributed level

05/12/16 - CC - camillie@i3s.unice.fr 13

Service
Oriented

Architecture

Service oriented architecture

→ How to transfer messages?

→ How to find a service and its interfaces?

→ How to handle the obtained data?

05/12/16 - CC - camillie@i3s.unice.fr 15

Transfer messages

● Services = distributed systems

● Communication through network

Over TCP/IP

● Several protocols
→ RPC, JRMP (for RMI),
IIOP (pour CORBA), etc.

Over HTTP

● WebServices (!)
→ SOAP or REST

05/12/16 - CC - camillie@i3s.unice.fr 16

Find services and their interfaces

● UDDI: web services discovery

Centralized directory that can be queried to get
information on a service.

● Interface:

○ WDSL for SOAP: XML contract file describing all
informations associated to a service.

○ WADL for REST: equivalent to WSDL, not highly used.

05/12/16 - CC - camillie@i3s.unice.fr 17

Manipulate Data

● WDSL contains all information on the data types

● Serialization in XML or JSON

05/12/16 - CC - camillie@i3s.unice.fr 18

Web Services

SOAP (Simple Object Access Protocol)

● Standardized by the OMG

● Based on XML

● Can be used with different transfer protocols

● Used in big systems

● Deployment is costly

05/12/16 - CC - camillie@i3s.unice.fr 20

REST (Representational State Transfer)

● No standard: mostly (good) practices

● Based on the concept of resources

● Uses HTTP for communication

● Used (more or less good) in many open APIs on the web
(Twitter, FlickR, Facebook, Instagram, etc…)

● Deployment is easy

05/12/16 - CC - camillie@i3s.unice.fr 21

WAIT A MINUTE!

One cannot solve everything

Focus on
REST

REST and Resources

● Focus on the data that is manipulated

● URL is composed from the resources → no verb
http://myapi.com/library
http://myapi.com/library/12/book
http://myapi.com/library/12/book/42

● Use of HTTP’s CRUD operations
POST Create (Update)

GET Read

PUT Update

DELETE Delete

05/12/16 - CC - camillie@i3s.unice.fr 25

REST and Resources

● Use of HTTP’s CRUD operations:
POST Create (Update)
GET Read
PUT Update
DELETE Delete

● Example:
GET http://myapi.com/book Retrieve list of books
POST http://myapi.com/book Add a book
GET http://myapi.com/book/42 Retrieve book 42
PUT http://myapi.com/book/42 Update book 42
DELETE http://myapi.com/book/42 Delete book 42

05/12/16 - CC - camillie@i3s.unice.fr 26

RESTful APIs

● Client-Server exchange

● Stateless

● Cache the most requested resources

● Resources oriented

● Layers/hierarchy of resources

05/12/16 - CC - camillie@i3s.unice.fr 27

RESTlike APIs

● Client-Server exchange

● Stateless

● Cache the most requested resources

● Resources oriented

● Layers/hierarchy of resources

05/12/16 - CC - camillie@i3s.unice.fr 28

Web APIs

● Client-Server exchange

● Stateless

● Cache the most requested resources

● Resources oriented

● Layers/hierarchy of resources

05/12/16 - CC - camillie@i3s.unice.fr 29

And for us

Creating a REST* API in Java

● Use the Jersey implementation (https://jersey.com.java)

● Use annotations: @GET, @POST, @Path, @Consumes, etc.

● Generate a war thanks to maven

● Deploy on an application server (Tomcat, Jetty, etc.)

05/12/16 - CC - camillie@i3s.unice.fr 31

https://jersey.com.java

Demo

?

